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Abstract

Although the filler particles typically used to reinforce elastomers are at least approximately spherical, prolate (needle-shaped) or oblate
(disc-shaped) particles have been used in some cases. The fact that anisotropic structures and properties can be obtained in these cases has
encouraged a number of experimental and theoretical investigations. The present study extends some earlier Monte Carlo simulations on
prolate particles in an amorphous polyethylene matrix, but now focuses on oblate particles. The particles were placed on a cubic lattice, and
were oriented in a way consistent with their orientation in composites that were the subject of an experimental investigation by one of the
authors. Rotational isomeric state representations of the chains were then generated to model the elastomeric network in the presence of the
filler particles. The chain end-to-end distributions were found to be non-Gaussian, and to depend significantly on the excluded volumes of the
particles. The particle-induced deformations of the network chains were consistent with results of some other relevant simulations and with
recent neutron scattering results. Specifically, the chain dimensions were found to decrease with increase in the axial ratios characterizing the
oblate shapes. As anticipated, the chain dimensions became anisotropic, with significant differences parallel and perpendicular to the
direction of the particle axes. In general, the network chains tended to adopt more compressed configurations relative to those of prolate
particles having equivalent sizes and aspect ratios. Use of these distributions in a standard molecular model for rubberlike elasticity gave
values of the elongation moduli, and these were found to depend on the sizes, number, and axial ratios of the particles, as expected. In
particular, the reinforcement from the oblate particles was found to be greatest in the plane of the particles, and the changes were in at least

qualitative agreement with the corresponding experimental results. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is relatively little molecular understanding of the
reinforcement of elastomers, even though this phenomenon
is of extraordinary importance in the utilization of rubber-
like materials [1-3]. The most common used reinforcing
fillers are carbon black and silica, and they are typically
separately prepared and then mechanically blended into an
elastomer. Their importance is due to the fact that they can
give large increases in the elastomeric modulus at a given
strain, and improvements of various technically important
properties such as tear and abrasion resistance, and resili-
ence. The primary unagglomerated particles of the filler are
almost always spherical by virtue of the way they are
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formed, for example in combustion processes or in precipi-
tations from solution.

There have now been several studies showing that
reinforcement of elastomers can also be achieved through
the in-situ polymerization of monomers such as styrene to
yield spherical particles of a glassy polymer, in this case poly-
styrene (PS) [4—6]. One advantage of such glassy particles is
the fact that they can be deformed into non-spherical shapes
through the deformation of the host elastomer above the glass
transition of the PS, and then cooling the material under the
applied deformation, before letting it relax [4—6]. In this way,
biaxial deformations can be used to obtain oblate (disk-
shaped) particles [6]. The same effect could be achieved by
the use of uniaxial compression but with much greater diffi-
culties in achieving significant uniform deformations. Such
disc-like fillers could provide an interesting parallel to the
clays platelets recently used to reinforce a variety of polymers,
including elastomers.

The method described, however, also lines up the
particles in the direction of the deformation used to distort
the particles into their ellipsoidal shapes. In the case of
oblate particles, the primary axis is perpendicular to the
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plane of the particle and is thus perpendicular to the
deformation direction. The opposite is the case for prolate
particles, which have their primary axis along the particle
that is thus parallel to the direction of deformation. This
technique also gives a non-uniform stress field around the
particles upon contraction of the elastomer [4-6]. It is
possible, of course to design experiments in which the
effects of shape changes are separated from the orientation
effects, and the non-uniform stress fields are removed. The
way to do this would be to dissolve away the host matrix
used to prepare the oblate particles, and then randomly
blend the particles into another elastomeric matrix.

In the experimental study of relevance here, oblate PS
particles covering a range of axial ratios were generated in
a poly(dimethylsiloxane) (PDMS) elastomer [6]. Axial
ratios were controllable, since they were generally found
to be close to the values of the biaxial draw ratio employed
in their generation. The moduli of these anisotropic compo-
sites were reported, but only in the plane of the biaxial
deformation [6]. It was not possible to obtain moduli in
the perpendicular direction, owing to the nature of the thin
film that had to be used in the experimental design.

There is some literature documenting the specific fact that
different filler shapes result in different types of reinforce-
ment, with various anisotropies in mechanical properties
[7-10], and a great deal more on reinforcing effects of fillers
in general [11-24]. There are a number of ways in which a
filler can reinforce an elastomeric network, including
increasing the effective degree of cross-linking, amplifying
the macroscopically imposed strain, etc. An additional
effect of the filler is the imposition of excluded volume
effects on the network chains, and this is probably the
easiest contribution to simulate [25-29]. The fact that the
chains cannot go into the volumes occupied by the filler
particles deforms their spatial configurations (relative to
the initial reference conformations in the absence of filler).
In the case of prolate ellipsoids, the changes can be either
expansions or compressions, depending on the lengths of the
chains. Since the distributions of end-to-end chain separa-
tions are central to the calculation of elastomeric properties
[30,31], quantities such as the modulus would change corre-
spondingly. In excluded-volume simulations of this type,
one postpones treatment of other effects that contribute to
the reinforcement.

Results from small-angle neutron scattering (SANS) and
small-angle X-ray scattering (SAXS) studies have provided
information on such filler-induced deformations of polymer
chains [21,30,32]. The neutron scattering study by Nakatani
et al. on silica-filled PDMS is most relevant to the present
issues [32]. They found that when the chain dimensions
were approximately the same magnitude as the filler particle
diameters, the scattering results showed a decrease in chain
dimensions at all filler concentrations. For longer chains in
the presence of fillers at relatively low concentrations, there
was an increase in these dimensions. These experimental
results are in good semi-quantitative agreement with earlier

Monte Carlo simulations in which spherical filler particles
were placed either (i) regularly on a three-dimensional cubic
lattice, or (ii) irregularly, in random arrangements through-
out the volume in which the chains were subsequently
generated [25-29].

The previous simulations on non-spherical particles by
the present authors involved Monte Carlo simulations on
prolate particles in a matrix of polyethylene (PE) [33].
The simulations were done for a sufficiently high tempera-
ture that the polymer would be amorphous (and thus
elastomeric). The particles were placed on a cubic lattice,
in part for convenience and in part because it is possible to
have particles self assemble into such arrays if they are
charged and the composite is aged under the right conditions
[34]. In any case, they were axially oriented in a way consis-
tent with their orientation in the composites that had been
experimentally investigated. There were found to be
particle-induced deformations that corresponded to
decreased chain dimensions and radii of gyrations upon
insertion of spherical particles amongst the chains, which
is consistent with earlier simulations and with the neutron
scattering results already mentioned. The decreases in
dimensions and radii, however, were subsequently followed
by increases upon increasing the axial ratios to distort the
spherical particles into prolate shapes. The chain dimen-
sions also became anisotropic, with significant differences
parallel and perpendicular to the direction of the particle
axes. Use of these distributions in the standard three-chain
model of rubberlike elasticity gave the corresponding
elongation moduli. The reinforcement from the prolate
particles was found to be greatest in the parallel direction,
and the changes were in at least qualitative agreement with
the corresponding experimental results [33].

The present study is a parallel investigation which consid-
ers oblate instead of prolate particles. It first focuses on the
distribution P(r) of the end-to-end vector of the network
chains [35,36]. The distributions obtained from the simula-
tions are then used in standard rubberlike elasticity theory
to estimate moduli within the plane of the disc and perpen-
dicular to it. Finally, at least qualitative comparisons will be
made between these simulated moduli and the most relevant
experimental results available at the present time.

2. The model and numerical calculations
2.1. The geometry of the model

As in the case of the prolate particles [33], the simulations
were carried out for PE chains having n = 300 backbone
bonds. The simulations were carried out for 425 K, which is
above the melting point of PE, so as to model the effects of
the particles within an amorphous elastomeric matrix. The
anisotropic effects arising from the oblate particles were
characterized by covering a range of values of their sizes
and aspect (axial) ratios 6 (of major to minor axes). For each
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Fig. 1. A three-dimensional cubic lattice of oblate filler particles as they
appear after distortion of the spherical particles into aligned oblate shapes.

The aspect ratios & of the ellipsoids were varied by changes in the extent of

the extension applied biaxially in the x—y plane, as shown by the arrows.
This biaxial extension is equivalent to compression along the particle (z)
axis, as illustrated. Also shown is a polymer chain that was randomly
generated among the oblate filler particles to determine particle-induced
changes on its spatial configurations, and thus on its distribution of end-to-
end distances.

simulation, the particles were assumed to be uniform in size
and shape, and firmly bonded to the PE matrix. Fig. 1 shows
a sketch of the model employed, whereby the originally
spherical particles are stretched biaxially into oblate shapes.
The particles are arranged on a cubic lattice, and aligned in
the direction of the plane of deformation. At the same
volume fraction of filler, the unit cell dimensions were
varied through the choice of the radius ry), of the initially
undeformed spherical filler particles.

A large number of Monte Carlo chains (N = 30000) was
generated to assure that the results were statistically signifi-
cant. A non-biased sampling was achieved by randomly
generating the locations for the origins of the chains, and
Euler’s rotation matrix was employed in order to have
random directions for the generation of chains. van der
Waal’s radii of the atoms were taken into consideration
when checking for overlap between the filler particles and
the polymer chain being generated; the CH, group was
treated as a united atom having a radius rcy, = 2.1 A.
Configurations that resulted in overlaps between the chains
and filler particles were rejected, so as to model this
excluded volume effect on the chain dimensions and
elastomeric properties.

2.2. The Monte Carlo simulations

The Monte Carlo scheme employed here uses a modified
Metropolis algorithm to calculate the average (x) of an
observable variable that depends on the chain configurations
[36]. The averaging is over all configurations {¢},
representing sets of {¢,..., ¢,}; possible torsional angles

along the backbone of a specific chain i with n repeat units.
The weighting factor (2; for the ith of these is a Boltzman
factor defined for a specific configuration {¢}; as a product
of a series of factors Uy, each associated with state { for
bond angle ¢, and state i for bond angle k [36].

2.3. The rotational isomeric model

According to the rotational isomeric state (RIS) theory,
the statistical weights for a polymer chain are given by
[37,38]:

Ury = €xp (—E/RT) (D)

where E;, is the energy for a pair of bonds with the first
being in state { and the second in state 7 ({ and 1 being
either trans, gauche+, or gauche ) [33]. These three
discrete rotational isomeric states are taken to occur at
torsional angles ¢ = 0, 120, —120°, respectively. Specific
values used for the energies Ey, are now standard, and are
given elsewhere [33]. It is noteworthy here that Hill and
Stepto were the first to employ the conditional probability
matrices for generating Monte Carlo chains [39]. Details of
the generation of Monte Carlo chains from conditional
probability matrices are discussed in greater detail in a
number of publications [25-29,33,35,39].

2.4. End-to-end vectors

For each chain configuration, the end-to-end vector r was
calculated in the usual way, by multiplication of bond
vectors containing equilibrium bond lengths (1.5410\ for
PE) with transformation matrices containing the relevant
complementary bond angles of the chain (68.0° for PE)
and the rotational angles already cited [25-29,33,35]. The
end-to-end distances were obtained from the described
Monte Carlo scheme. The range of r/r,,,, was divided into
15 intervals (grids), where the maximum extension rp, is
given by nf, (for n bonds of length £,). The radii of
gyration as well as the relevant x, y, and z components
were obtained in the same manner. The numbers of chains
in the various intervals were averaged to give a histogram of
the distribution, and a smooth curve was then placed
through the points by cubic splines fitting.

2.5. Elastomeric properties

The resulting distribution P(r) can now be used to calcu-
late the desired elastomeric properties of the chains [33,35].
It is directly related to the Helmholtz free energy A(r) of a
chain having the end-to-end distance r by:

A(r) = ¢ — kT In P(r) ()

where c is a constant. This equation can be applied to the
case of elongations in which the chains respond affinely
(linearly) to the macroscopic deformation [33]. This
macroscopic deformation A, along the direction #is defined as:

A =L/JL,, 3
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Here, L, is the length of the sample in the direction #(t =
X,¥,7) in the unfilled reference state, and L, is its value in
the filled network at the start of the experiment. Assuming
an affine deformation, L, and L, are related to the ¢
components of the end-to-end vector of the chains. The three
main-axis deformation tensor components A;, are related to the
volume at the start of the experiment V, and the reference
volume V, of the isotropic unfilled network by:

Aix)\iyAiz = V/VO (4)

Since in this study anisotropy is induced only along the
direction of the deformation, it follows that two of the three
terms are equivalent. As would be expected, V # V,, due to
the anisotropy of the polymer chains induced by the oriented
filler particles. The deformation ratio «, relative to the
dimension L, at the start of the experiment is given for the
case of isotropic deformation by:

a = L/Ly = (VIVy) A, )
For anisotropic deformations
o = LiLyy = (Li/Ly) ' A = (A) "' A, 6)

where A; refers to the change of dimensions of the filled
network relative to the unfilled network before application
of the deformation. Incompressibility of the network is
assumed, so the volume V remains constant after the stress
is applied. When the deformation « is applied along the
draw direction of the filler particles, for example the z-axis,

L=MDa A=t =Na " o

Whereas if the direction of deformation is in the perpen-
dicular direction x or y, three independent deformation
ratios will result.

A= Ao )\y — (Aix)a*I/Z A= (Aiz)aﬂ/z )

Within these approximations, the three-chain model leads
to the following general expression for the elastic free
energy change during deformation [33,35]:

AA = (W3)[A(rA,) + A(roAy) + A(rd, — 3A(r,)] C)

where, v is the number of mols of chains in the network and
Ty = (rz)(l,/2 is the value of the root-mean-square (rms) end-
to-end vector of the chains.

The nominal stress f* (defined as the elastic force at
equilibrium per unit cross-sectional area of the sample in
the undeformed state) can be obtained from [40]:

8AA>
T

r=-1(%2

o (10)

For stretching parallel to the draw direction, this
becomes:

= —(kTro3)G (re(\)a) — a G (ry(A)e” "] (11)

and for deformation transverse to the draw direction,

e.g. along the x-axis,

f* = (CUTr 3G (r(A)a) = o 212{G'(rg(A)a” ")
+ Gy )] (12)

where G(r) = In P(r), and G('r) denotes the derivative
dG/dr. The IMSL subroutine ‘CSDER’ was used in the
numerical calculations of the derivative of the smoothed
function P’ (r/ryay), together with the relationship G’ =
P'IP.
The modulus or reduced stress defined as [40]:
[f'1= S — (13)
oa— o

is often fitted to the Mooney—Rivlin semi-empirical formula
[40]

[f1=2C, +2Cya”! (14)

where 2C; and 2C, are constants independent of deforma-
tion . Some of the results obtained will be represented in
this form.

In the case of filled networks, however, the deformation o
relevant to the elastomeric matrix chains should be replaced
by an effective mean amplified extension ratio o due to
the hydrodynamic effects of the filler, i.e. the disturbance
of the strain distribution [31,41]:

Qeip = (@ — DXegr + 1 (15)

where the effective ‘Guth amplification factor’ X, for
spherical particles is [31,41]:

Xep = 1 + 2.5v; + 14107 (16)
For non spherical particles (6 > 1), X, is given by [41]:
Xop = 1 + 0.676v; + 162807 17)

where v; is the volume fraction of filler. As already
mentioned, & is the aspect ratio shape factor, which for
oblate particles is the ratio of the diameter to the thickness
of the filler particles.

3. Results and discussion
3.1. Radial distributions

The Monte Carlo results obtained for the rms end-to-end
distances (r2)!? are reported in Table 1. They are for both
the initially undeformed spherical particles and those
deformed into oblates with their particle axis oriented
along the z-axis, transverse to the plane of deformation of
the particles, as shown schematically in Fig. 1.

Figs. 2 and 3 show the distributions of the end-to-end
vector P(r) as a function of the relative extension r/rp,,
for PE chains at a volume fraction of filler v; = 0.2. The
results are for particles that were initially undeformed
spheres (aspect or axial ratio 6 = 1) with radii of 20 and
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Table 1

Results of Monte Carlo calculations for polyethylene chains having 300
skeletal bonds in a cubic lattice of oriented oblate filler particles, at 425 K
and at a volume fraction of filler vy = 0.2

5 le (I’Z (1)/2(: <52 ‘1)/211 Cge )‘izf /\I_ng
Toh =20 A

0.0 55.13 71.15 49.76 6.76 1.0 1.00
1.0 61.22 43.45 5.00 1.0 1.00
2.0 58.54 41.60 4.58 0.64 1.04
4.0 57.57 41.05 4.43 0.45 1.06
6.0 57.64 41.26 4.44 0.44 1.06
Toph = 40 A

0.0 110.25 71.15 49.76 6.76 1.00 1.00
1.0 65.36 46.37 5.68 1.00 1.00
2.0 64.36 45.75 5.53 0.84 1.05
4.0 62.92 45.06 5.29 0.74 1.05
6.0 63.14 45.23 5.32 0.73 1.06

* Aspect ratio of the oriented oblate particles.

® Cubic unit cell dimension in A.

¢ Root-mean-square end-to-end distance in A

4 Root-mean-square radius of gyration in A.

¢ Characteristic ratio, (r*),/n€>.

f Anisotropic changes of initial chain dimensions relative to the spherical
ones in the longitudinal direction of the oriented particles (z axis).

¢ Anisotropic changes of initial chain dimensions relative to the spherical
ones in the transverse direction of the oriented particles (x,y axes).

P(r)

0.0 0.1 0.2 0.3 0.4

Fig. 2. Radial distributions P(r) of the end-to-end vector r, obtained by
Monte Carlo simulations, shown as a function of the relative chain exten-
sion r/ry.. In this figure and the following ones, the results pertain to
amorphous polyethylene chains having n = 300 skeletal bonds, at 425 K,
in the presence of oriented oblate filler particles having a volume fraction v¢
of 0.2. The quantity gy, denotes the radius of the filler particle before its
deformation into oblate shapes having the specified values of the aspect
ratio § The particular results shown here correspond to 7, = 20 A, and the
solid line represents the results for the unfilled polymer chain (in the
absence of any particles).

40 A, respectively. Calculations were also carried out for
oblate ellipsoidal particles which had é = 0.5, 0.25, 0.166,
and 0.125. For purpose of clarity, only representative results
are shown in these two figures. Each curve is labeled with
the appropriate value of 8§, and results for free chains (in the
absence of filler particles) are represented by the solid line.
The chains in the lattice of spherical particles clearly show a
shift to lower values of r/ry,,, which is a clear indication
that the chains are compressed relative to the free chains. A
characteristic feature of Figs. 2 and 3 is the fact that drawing
the spherical filler particles into oblate ones causes a further
shift to relatively lower values of r/r,., with the chain
dimensions being decreased. This could easily be described
in terms of the preferential orientation of the chains in the
plane of deformation that is perpendicular to the particle
axis, thus resulting in a preferential decrease in the effective
free volume in the biaxial deformation plane. As the draw
ratio increases in the plane, the chains become restricted in
the biaxial deformation plane and are not able to extend in
the z-direction (which is becoming more and more filled by
the expanding disk-shaped oblate particles). This is in
contrast to the behavior observed in the case of cigar shaped
prolate particles, specifically a shift to higher values of
7/ pax» 1-€. towards those for the unfilled chains [33]. This
has been already described in terms of the preferential orien-
tation of the chains that occurs along the draw direction,
resulting in a preferential increase of the effective free
volume in the same directions. Thus the chain dimensions
would have been expected to increase.

Fig. 3 presents a clear demonstration of the effect of the
filler particle size on these changes. The magnitude of the
observed shift for rg, = 40 A as the aspect ratio 6 of
the spheres decreases is far less than that observed for the
smaller filler particles (20 A). Such differences are expected

0.5

P(r)

Fig. 3. Radial distributions for the case ry,, = 40 A. See legend to Fig. 2.
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as a result of an increase of the lattice unit cell dimensions
with an increase in particle size, when the volume fraction
of the filler is kept constant, as shown in Table 1. With an
additional increase in the free volume accessible to the
chains, this is accounted for by the anisometry of particle
shape effects resulting from the spheres pre-strained into
oblate particles. This clearly demonstrates the effects of
the particle shape on the matrix polymer chains.

Of course, in both Figs. 2 and 3 all the curves for a chain
in a matrix filled with spherical or oblate particles display
significant deviations from that for the free chains, and from
Gaussian behavior in general. In other words, when the
cubic unit cell dimension are greater than the root-mean-
square end-to-end distance {(r*)\"* of the polymer chains, the
effects of the volume exclusion by the filler particles
become less and less important. In the case of oblate filler
particles, the excluded volume effects should be taken into
consideration with the decrease in the aspect ratio if the
spherical particles are biaxially stretched (or compressed)
into oblate ones, when both the particle size and volume
fractions are the same. As is readily apparent, there is a
decrease in the effective free volume preferentially accessi-
ble to the chains, with a decrease in the aspect ratio, as a
result of anisotropic particle shapes [33].

Unique distributions would be expected if the simulations
were extended to lattices with rg, <20 A. Unfortunately,
most of the generated chain conformations then overlap
with filler particles and have to be rejected, and the
computer time needed for such simulations becomes
unacceptably long.

3.2. End-to-end dimensions and radii of gyration

For purposes of illustration, Fig. 4(a) presents values of
the rms end-to-end distance as a function of the reciprocal
aspect ratio 1/6 with 1/6 = 0 corresponding to the unfilled
material. The results show that (+*)!? for chains in lattices
with spherical and oblate particles are significantly reduced
in comparison to those in unfilled lattices. Again, as
expected, values of (+*)!* for filler particles having initial
Fsph = 40 Aare hiogher than those for spherical particles with
initial rg, = 20 A. These differences are expected as a
result of an increase in the unit cell dimensions for a fixed
value of v;. Most important, the results clearly demonstrate
the effects of anisotropic shapes on the distributions of the
end-to-end vectors. Spheres, which are pre-strained into
anisotropic oblate shapes lead to a decrease in the effective
free volume accessible within a unit cell, or could even
permit the chains to extend into neighboring cells, anisotro-
pically, in the direction of draw. In other words, excluded
volume effects are now not negligible for such anisotropic
disk-shaped oblate particles, in contrast to the case of the
cigar shaped prolates [33].

In Fig. 4(b), the rms radii of gyration are displayed as a
function of 1/6. As shown here and in Table 1, the radii
of gyration (s*)!? and characteristic ratios (Y /nb?

70
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Fig. 4. Root-mean-square end-to-end distances (a), the root-mean-square
radii of gyration (b), and the characteristic ratio (c) of the chains described
in Figs. 2 and 3 as a function of the reciprocal aspect ratio 1/6 for filler
particles having rg,, = 20 or 40 A. See legend to Fig. 2.
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Fig. 5. Anisotropic changes of the initial chain dimensions induced by the
aligned oblate particles relative to the dimensions in the presence of the
spherical particles (6 = 1.0). The results are shown as a function of
the Dreciprocal aspect ratio 1/6 for filler particles having rg, = 20 or
40 A. Results are presented for the longitudinal direction of the particle
axes (z direction), and for the transverse (x,y) plane in the direction of
biaxial deformation of the initial spherical particles. See legend to Fig. 2.

(illustrated in Fig. 4(c)) are found to follow the same trends
seen in Fig. 4(a).

3.3. Changes in the components of the end-to-end
dimensions

The effects of the anisotropic shape on the distribution
functions of the chains are shown in Fig. 5 and Table 1. The
anisotropic changes in the chain dimensions of the pre-
strained oblate filled matrix relative to the spherical one
were calculated in the longitudinal and transverse directions
of the particle axis. Values of A; = L;/L, (t = x,y,2) serve
as a measure of the change of dimensions of the network
filled with pre-strained oblate particles relative to the
spherical one, before the application of the deforming
strains. These values are represented in Fig. 5 as a function
of the reciprocal aspect ratio for oblate filler particles having
Feon = 20 or 40 A. of significance here are the observed
pronounced decreases in chain dimensions along the
particle (z) axis. This is consistent with conjectures reached
in the previous section about the effective free volume
accessible to the chain in the presence of this particular
disk-shaped oblate particle in the matrix. Undoubtedly,
there is anisotropy in the initial dimensions of the chain as
a result of the anisotropy of the pre-stretched oriented filler
particles in the x—y plane of the draw. Along the direction of
particle (z) axis, the initial dimensions of the chain were
only slightly affected and reached asymptotic values with
increase in the reciprocal aspect ratio 1/8. The effects are

even larger when such values are calculated relative to the
unfilled networks.

This clearly underscores the fact that composites having
non-spherical oriented filler particles demonstrate discern-
ible anisometry. Consequently, significant changes in the
deformation behavior are expected, as will be addressed in
the following sections. It is now apparent that such excluded
volume effects of oriented particles result in anisotropic
particle-induced chain deformation (a type of ‘overstrain’).
In consequence, stiffening of the polymeric matrix upon
addition of hard fillers is expected owing to larger micro-
scopic than macroscopic strains. As such, chain dimensions
are generally smaller relative to those in a matrix filled with
prolate particles having the same initial size of the sphere at
equivalent extents of distortion of the particles [33]. This is
a clear reflection that the larger planar size of the disk
shaped oblate particles severely reduces the effective free
volume accessible to the chains. Consequently, the chains
are forced to adopt more compressed configurations, in
particular along the particle (z) axis.

3.4. Transverse (planar) moduli and overstrain

Fig. 6(a) and (b) demonstrate the anisotropic shape effects
of the oriented filler particles on the reduced modulus
[f"1/vRT as a function of reciprocal elongation a~'. The
representation is that suggested by the Mooney—Rivlin
relationship [40], and the results are for the chains described
in Figs. 2 and 3. Contrary to the case of chains in a matrix of
oriented prolate particles, there are no pathological maxima
and minima observed earlier in some stress—strain curves
[33]. Such pathological behavior indicated that a slight
change in the shape of the distribution function near r,
had a pronounced effect on the stress—strain behavior. The
effect might also be related to the histogram method gener-
ally employed. The proper calculation of the distribution
function near r, might require histograms with smaller inter-
vals around r,. In the earlier case, the fact that the range of
r/rmax was divided into only 15 intervals could have been
responsible for at least part of the observed behavior.

In any case, at small strains an increase in the normalized
longitudinal modulus in the x—y plane of draw of the particle
is seen in Fig. 6(a) for chains filled with oriented oblate
particles. The increases are relative to that for the free
chain and matrix chains filled with spherical particles
(rgpn = 20 A). The enhancement of the small-strain modulus
was estimated to be 400-600%. Similar behavior is
observed in Fig. 6(b) for matrices filled with larger particles
(repn =40 A). All the isotherms in these figures show
upturns in modulus as elongation increases, and such non-
Gaussian behavior is clearly a result of the finite extensi-
bility of the chains. More specifically, these upturns are due
to the rapidly diminishing number of configurations at larger
values of the end-to-end separation r. Correspondingly, this
is accompanied by significant decreases in the entropy of the
chains, with corresponding increases in [f"]. Such increases
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Fig. 2.

are more pronounced for particles having smaller aspect
ratios, e.g. 6 = 0.166 (larger dimensions in the x—y plane
of drawing).

Anisotropic increases in modulus [f*],, in the biaxial
plane of draw above those for the free chains are clearly
present, particularly at small strains. An increase in particle
size results in an increase in the unit cell dimensions, at
fixed vs. As is demonstrated in Fig. 6(a) and (b), and as
expected from Figs. 2 and 3, chains in lattices of oriented
non-spherical oblate particles also show nearly equal
elongations at which the upturns in the modulus occur.
This is a result to be expected from the diminished values
of r,. Again, with increase in particle size (i.e. with

increasing unit cell dimension at fixed vy), the nominal stress
for large aspect ratios approaches the limit of a free chain. In
this connection, it is noteworthy that the stress—strain
behavior depends on the specific shape of the end-to-end
distribution function near r, [33,35].

Deviations from the Mooney—Rivlin predictions can
easily be due to slight changes in the shape of the distribu-
tion function near r, [33,35]. In our previous study on
spherical particles arranged on a cubic lattice it was found
that even at equivalent values of r,, the shapes of the stress—
strain curves were entirely different, with some showing
some unphysical behavior in a manner similar to that seen
in Fig. 6 at higher elongations. It is well accepted that
upturns in the modulus should occur earlier for filled chains
owing to their induced overstrains in the initial state. Such
effects are not clearly discernible, however.

The main point here is that the planar (transverse) moduli
obtained for chains in oriented oblate particle lattices with
undeformed rg,, = 20 and 40 A are larger than those for
unfilled and networks filled with spherical particles, in
particular at low extensions. Furthermore, it is clear that a
slight change in the particle size, and correspondingly in the
unit cell dimensions, has significant effects on values of the
modulus. It should be noted that for Gaussian chains
the modulus [f*}/»RT is independent of elongation, and
has a value of unity. Fig. 6(a) and (b) show that PE chains
having 300 bonds in an unfilled network and even in some
of the filled networks have almost Gaussian-like behavior at
low elongations.

The results obtained clearly demonstrate the extent to
which excluded volume effects of oriented non-spherical
particles result in particle-induced chain deformations
that are anisotropic. This is certainly a type of strain
amplification ‘overstrain’. In consequence, higher values
of moduli are expected as a result of the stiffening of the
polymeric matrix chains. This is a result of the addition of
hard fillers making the microscopic strains larger than the
macroscopic strains.

3.5. Longitudinal moduli

Fig. 7(a) and (b) show the longitudinal moduli, along the
direction of the particle (z) axis. As would be expected, at
lower values of the axial ratio of the oblate particles, values
of the modulus are below that for chains in unfilled matrices.
The deviation becomes less pronounced with decrease in &
however. It is worth noting that a decrease in the aspect ratio
of the oriented particles is expected to change the effective
lateral dimensions accessible to the chain. In particular,
chain dimensions undergo a pronounced decrease along
the particle axis. Hence, there are decreases in the longi-
tudinal moduli with decreases in the aspect ratio of the
oriented oblate particles. This would be expected as a result
of a reduction in the effective free volume that very signifi-
cantly decreases values of the longitudinal (z) components
of r,, as already discussed.
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As before, the stress—strain behavior at the same loading

vy shows strong dependences on the sizes and axial ratios of
the particles.

3.6. Some comparisons with experiment

The numerical results thus presented are in qualitative
agreement with changes in moduli experimentally obtained
by Wang et al. [6] for the case of oriented rigid oblate PS
particles prepared by biaxial deformations above the PS
glass transition temperature. Unfortunately, it was not possi-
ble to obtain moduli perpendicular to the disks, owing to the
nature of the thin film that had to be used in the experimental
approach taken. Also, quantitative comparisons are difficult
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because the polymers are different, there are non-uniform
stress fields around the particles after the deforming matrix
is allowed to retract, and the present simulations apply to the
particles on an ideal cubic matrix. Additional experiments

and simulations should permit more detailed comparisons
between experiment and theory.
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